
HSTS Measurement and an Enhanced
Stripping Attack Against HTTPS

Xurong Li1(B), Chunming Wu1, Shouling Ji1,2, Qinchen Gu3,
and Raheem Beyah3

1 Zhejiang University, Hangzhou, China
{lixurong,wuchunming,sji}@zju.edu.cn

2 Alibaba-Zhejiang University Joint Institute of Frontier Technologies,
Hangzhou, China

3 Georgia Institute of Technology, Atlanta, USA
qgu7@gatech.edu, raheem.beyah@ece.gatech.edu

Abstract. HTTPS has played a significant role in the Internet world.
HSTS is deployed to ensure the proper running of HTTPS. To get a
good understanding of the deployment of HSTS, we conducted an in-
depth measurement of the deployment of HSTS among Alexa top 1
million sites, and investigated bookmarks and navigation panels in dif-
ferent browsers. We found five types of threats, including transmission
errors, redirection errors, field setting errors, the auto completion mecha-
nism in bookmarks and the embedded addresses in navigation panels. To
demonstrate defects we found, we designed an enhanced HTTPS strip-
ping attack, which was upgraded from the original sslstrip attack. Finally,
we gave three effective suggestions to eliminate these defects. This paper
exposed various risks of HTTPS and HSTS, making it possible to deploy
HTTPS and HSTS in a more secure way.

Keywords: HSTS · HTTPS · Stripping attack · Security

1 Introduction

Users value security and privacy more than ever. HTTPS [1], which consists of
HTTP [2] and SSL/TLS [3,4] protocols, is created to provide confidentiality and
integrity of web browsing. Recently, many companies have taken measures to
prompt the deployment of HTTPS. Since 2014, Google has improved rankings
of the websites which deploy HTTPS [5]. Furthermore, in Chrome, the websites
which do not deploy HTTPS can not even make use of geographic location
and the application cache. Eventually they will result in an unsafe symbol in
the address bar of the Chrome browser. In the past, obtaining and maintaining
of the digital certificates would cost a lot. Therefore small companies or big
companies with many domain names might not deploy HTTPS for the cause
of expense. Fortunately, Let’s Encrypt [6], which is a non-profit organization,
provides Domain Validation (DV) certificates for free through a fully automated
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 489–509, 2018.

https://doi.org/10.1007/978-3-319-78813-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_25&domain=pdf


490 X. Li et al.

process. Apart from Let’s Encrypt, several content distribution networks and
cloud service providers, including CloudFlare and Amazon, provide free TLS
certificates to their customers.

However, there are still many HTTP connections that exist in the Inter-
net. To handle the mix of HTTP and HTTPS connections seamlessly is diffi-
cult for browsers due to the stripping attack. HTTPS stripping attacks have
raised widespread concerns since Marlinspike put forward sslstrip at the black-
hat conference in 2009 [7]. Attackers can intercept the communication between
the target website and the client, and change all https into http in the response
packets from the website. Even though this attack violates the rule which states
TLS/SSL should ensure end to end security, neither the client nor the server can
be aware of the attack for the reason that the packets sent from servers are still
encrypted.

To defend against the stripping attack, HTTP Strict Transport Security
(HSTS) [8] protocol was presented in 2012. It defines a mechanism enabling
websites to declare themselves accessible only via secure connections. In con-
sideration of the complexity of protocol and the diversity of communication
platforms, we are concerned about whether the HSTS policy has been under-
stood well. In our work, we conducted a comprehensive measurement about the
deployment situation of HSTS on both PC and mobile websites. Subsequently,
we investigated the bookmarks and navigation panels in browsers. We found five
kinds of risks in the deployment on different platforms, which can be ignored
easily by users or developers. These risks are categorized in Table 1. According
to the risks we found, there is still a great probability of launching a stripping
attack. But after our tests, the old sslstrip tool failed to attack the current
websites. In order to understand the dangers of these risks well, we enhanced
the original stripping attack and implemented a new HTTPS stripping attack
through adding an script. Finally, we launched the attack in a simulative envi-
ronment to test various famous sites, including mail.qq.com, www.amazon.com,
www.baidu.com, taobao.com. The results of stripping attack were all successful
based on the defects we found. The major contributions of this paper are as
follows:

– We conduct an in-depth measurement of HSTS deployment on both PC web-
sites and mobile websites, and the results show that many problems exist in
the deployment, including incorrect setting methods and field setting errors.
Particularly, redirection problems in mobile websites pose a risk to HSTS.

– We perform an investigation about bookmarks and navigation panels in dif-
ferent browsers. Through careful observation, we find that defects of the auto
completion mechanism in bookmarks and the embedded addresses in naviga-
tion panels may lead to a stripping attack.

– We analyze the old sslstrip tool, and find it is not suitable for complicated
webpages. Besides, we implement an enhanced HTTPS stripping attack.



HSTS Measurement and Stripping Attack 491

Based on the defects in browsers and deployment of HSTS, we launch this
attack in several simulative scenarios successfully1.

– We give three kinds of useful suggestions to handle these security threats
above.

Table 1. Five kinds of risks found in the measurement

Incorrect setting method HSTS is set via HTTP

Field setting errors Many field settings in HSTS headers do not
obey the standard

Redirection problems HSTS is not deployed correctly during
redirections

Bookmark in browsers The auto completion mechanism in
bookmarks only provides HTTP

Navigation panels in browsers The embedded addresses in navigation
panels take HTTPS as HTTP

The rest of this paper is organized as follows. Section 2 provides background
information about HTTPS and HSTS. Section 3 details the data collection, and
introduces the data source. Section 4 gives an in-depth analysis of deployment
of HSTS on both PC websites and mobile websites. Section 5 implements an
enhanced HTTPS stripping attack, and demonstrates the attack. Section 6 dis-
cusses possible mitigations. Section 7 surveys related work. And finally, Sect. 8
concludes our work.

2 Overview of Web Security

HTTPS [1] was created in 2000. It describes how to use TLS to secure HTTP
connections over the Internet. In this section, we will give a short introduction
to HTTPS and HSTS, and talk about HSTS security and stripping attack.

2.1 HTTPS and Stripping Attack

A few years ago, HTTPS was deployed only in financial or e-commerce payment
pages or login pages. However, the situation has changed over time. More and
more sites began to deploy HTTPS. One of the reasons is that many studies show
that the site owners should provide HTTPS service on all site pages, including
whole resource files and thus encryption of part of the sites is proven unsafe
[9,10]. Another reason is the emergence of free certificates and TLS accelerator.
The cost to maintain HTTPS service was very expensive, which contained the

1 We conducted the experiment in local computers and network, which formed an
emulated environment.



492 X. Li et al.

cost of applying certificates, the cost of updating certificates, and the perfor-
mance overhead caused by extra encryption or decryption. Fortunately, these
problems have been solved in recent years. Many organizations began to provide
free TLS/SSL certificates and websites greatly benefited from HTTPS.

Nonetheless, HTTPS stripping attack poses a risk to HTTPS. When users
type a domain name without protocol type (HTTP or HTTPS), the default
request type is HTTP rather than HTTPS. Usually, if the server provides
HTTPS service, the server will give a 302 redirection after receiving an HTTP
request. However, the attacker can intercept the traffic through ARP spoofing
and replace all https with http in the response packet. Thus the browser will still
request an HTTP website regardless of the 302 redirection. Again, the attacker
can replace all http with https in the request packet. The attack is shown in
Fig. 1. The communication between the attacker and the server is encrypted,
but the communication between the attacker and the browser is in plaintext.
This attack is called HTTPS stripping attack, which can not be detected by
browsers or servers as it follows the HTTP communication protocol.

Fig. 1. Stripping attack: the attacker can intercept the traffic, establish an encrypted
connection with the server, and communicate with the client via HTTP.

2.2 HSTS Protocol

To avoid the HTTPS stripping attack, HTTP Strict Transport Security (HSTS)
policy was created in 2012 [8]. The policy is declared by websites via the Strict-
Transport-Security HTTP response header field or by other means, such as user
agent configuration. If the server wants to provide HTTPS service all the time,
it will send an HSTS header to the browser. According to the information in
headers, the browser will remember the domains which want to force to be visited
by HTTPS. And when users send an HTTP request next time, the browser
automatically converts HTTP to HTTPS in the background. The HSTS policy
defines the standard of HSTS headers, and the headers mainly consist of three
fields. The first is the max-age field, which means the expiration time and it is
mandatory. The second is the optional includeSubdomains field, which indicates
whether the HSTS policy applies to the subdomains of the domain. The last
one is the preload field and it is also optional. This field indicates whether the
domain has been permanently added into the preload list, which is maintained



HSTS Measurement and Stripping Attack 493

by browser providers. What is essential is that these headers can only be sent by
HTTPS requests, hence the attacker can not arbitrarily tamper with the HSTS
policy to disable it.

2.3 HSTS Security Consideration

Although HSTS policy can defend against HTTPS stripping attacks to a cer-
tain extend, many new security issues still exist. The most common one is the
incorrect configuration as many developers do not have a good understanding of
the HSTS policy. For instance, if the max-age value is set too big or too small,
HSTS policy will be reused or invalid. If the max-age value is too big, the pol-
icy will still work all the time even though the server does not want to provide
HTTPS service anymore, which may cause websites unable to be visited. If the
max-age value is too small, HSTS policy will be invalid in a very short period of
time, which can be used to launch MitM attack by attackers. Besides, misuse of
includeSubdomain and preload field will be vulnerable against DoS attacks. If the
servers are unaware of being added to preload list and do not provide HTTPS
service, the sites will fail to be accessed. In addition, whether the subdomains
have properly deployed HSTS, whether each step in the redirection is deployed
correctly and whether the web application contains any insecure references to
the web application server are all problems concerned. Based on these consider-
ations, we decide to conduct an in-depth measurement about HSTS deployment.

3 Data Collection

We used Python as the programming language in the whole experiment and
we rewrote the urllib2 library so that it could meet our requirements. Not only
did we use urllib2 to send HTTP or HTTPS requests, but also did we record
each HSTS information in the event of redirection. First, we surveyed www sub-
domains of top 1 million sites [11] with PC user-agent2. The reason we chose
this user-agent was that Chrome was the main advocate of HSTS. We sent
both HTTP and HTTPS requests for the same domain name and recorded the
response packets in each redirection. Then we sent the same requests to 1 mil-
lion sites, except that mobile user-agent3 was used instead. We repeated this
process for three times to reduce the influence caused by network performance.
In total, we sent out 1 million HTTP requests and 1 million HTTPS requests
(like http://www.example, https://www.example4). Finally, we successfully vis-
ited 937,430 sites with HTTP requests and 631,833 sites with HTTPS requests,
respectively, using PC user-agent. For mobile-agent, the number of successfully
accessed sites is 936,268 and 635,041, respectively. Because of several sites which
2 Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/54.0.2840.59 Safari/537.36.
3 Mozilla/5.0 (Linux; Android 5.0; SM-G900P Build/LRX21T) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/55.0.2883.95 Mobile Safari/537.36.
4 Here example refers to a domain name.



494 X. Li et al.

failed to respond, the number of responses is less than that of requests. As for
HTTPS requests, many servers neither provided HTTPS service, nor provided
a 302 redirection after receiving an HTTPS request. Based on these facts, many
websites could not be visited when we sent an HTTPS request directly. All
experiments were conducted in February 2017 and websites may adopt different
policies over time.

4 Current Deployment Measurement

There are two ways to deploy HSTS policy. The first one is preload list, which is
inserted into the browsers, and the other is dynamic HSTS, which is deployed by
HTTP header. Kranch and Bonneau [12] has studied the preload list carefully.
Therefore in this paper, we point out several problems about preload list which
was not found in their work. What should be emphasized is that our work is
completely different from Kranch’s. We explain the reason why the maintenance
of preload list is risky. Besides, we first conduct the measurement on mobile sites
and analyze the redirections problems in detail. Moreover, we list the specific
field setting errors and study the deployment in various browsers.

4.1 Preloaded HSTS

If domain has been added into the preload list, the browser will automatically
convert HTTP requests for the domain to HTTPS requests in the background.
We discovered a few new problems in preload list. The first one was sites added
into the preload list do not send HSTS header. Sites with preload list need to
set HSTS header as well since not all browsers support preload list. Users would
be hijacked easily when they visit these sites on browsers which do not support
preload list.

The maintenance of preload list is a hidden risk as well. Google has provided
a website [13], which is used to submit domains for inclusion in Chrome’s HTTP
Strict Transport Security (HSTS) preload list. However, the requirements of
submission are very strict and the sites must satisfy all requirements. If a site has
been added into preload list before, but later it does not satisfy all requirements
anymore, Chrome will delete it from preload list without notification [14]. As
a website owner, one will not be visiting the HSTS preload page every week
so the site may just be removed from the preload list without warning and the
owner may not even notice it until many months later. Moreover, requirements
for preload list are always changing. The website’s owner has to pay attention
to the state of preload list all the time.

Last but not least, sites in preload list have many setting errors and incor-
rect deployments [14]. For example, many redirections occur when we visit the
HTTPS sites, but HSTS is not properly deployed in each event of the redi-
rections. Not all subdomains support HTTPS and many HSTS headers do not
contain preload or includeSubdomain field.



HSTS Measurement and Stripping Attack 495

4.2 Alexa Top Million Websites with Dynamic HSTS

We wanted to know if the redirection was different across different platforms, so
we conducted the test on both PC and mobile clients. In the rest of the paper,
we use PC sites to mean the visit to the websites with PC user-agent, and use
mobile sites to mean the visit to the websites with mobile user-agent.

Table 2. Successful responses of 1 million requests

Request type HTTPS responses HTTP responses Total

PC-HTTP 170,883 766,547 937,430

PC-HTTPS 529,555 102,278 631,833

Mobile-HTTP 171,171 765,097 936,268

Mobile-HTTPS 525,724 109,317 635,041

The Overall Data Distribution. The results of all responses summarized
in Table 2. As mentioned in Table 2, we got 937,430 PC responses and 936,268
mobile responses through the HTTP requests, and got 631833 PC responses
and 635,041 mobile responses through the HTTPS requests. According to the
results, we can know that many sites support both HTTP and HTTPS. Most
PC sites (81.8%) and mobile sites (81.7%) still supported HTTP. We think the
main reason is that many users are still using outdated browsers or systems,
which do not support HTTPS well. Hence, website owners would like to remain
compatible with these users’ web clients and they responded to both HTTP
requests and HTTPS requests. As for HTTPS requests, while more than half
of the sites supported direct HTTPS access, a number of sites which did not
support HTTPS failed to redirect HTTPS requests to HTTP sites. These web-
sites may be vulnerable to DoS attack if the browsers keep sending HTTPS
requests. Consequently, we analyzed the deployment of dynamic HSTS based on
the results of responses. We counted the HSTS settings according to the HTTP
200 OK headers in Table 3.

Table 3. HSTS header setting

Request type Sites with HSTS header

PC-HTTP 36,788 (3.9%)

PC-HTTPS 43,301 (6.9%)

Mobile-HTTP 36,643 (3.9%)

Mobile-HTTPS 43,353 (6.8%)

Two years ago, however, Kranch [12] found just 12,593 sites which attempted
to send an HSTS header. This may imply an increasing number of sites realized



496 X. Li et al.

the significance of HSTS and decided to deploy it. We clearly see the results are
different for HTTP and HTTPS requests. Further analysis shows that 8296 PC
sites deployed HSTS for HTTPS requests but not for HTTP requests. Particu-
larly, when we visited the 8296 PC sites with HTTP requests, we got 8213 HTTP
webpages and 83 HTTPS webpages. This is an interesting phenomenon, since
the 8213 PC sites may support both HTTP and HTTPS to stay compatible with
more users, but the 83 PC sites redirected HTTP requests to HTTPS requests
without HSTS header, which may be a threat. Furthermore, we analyzed the
distribution of HSTS deployments with Alexa ranking in Table 4.

Table 4. Alexa ranking and sites with HSTS

Request type Top10 Top100 Top1W Top10W Top100W

PC-HTTP 7 30 814 5,607 36,778

PC-HTTPS 8 33 866 6,266 43,301

Mobile-HTTP 8 31 812 5,589 36,643

Mobile-HTTPS 8 31 855 6,242 43,353

From Table 4, we can learn the top websites attached great importance to the
deployment of HSTS. More specifically, among the top 10 websites, www.qq.com,
which is a news site, only supports HTTP requests, and www.google.co.in sup-
ports HTTPS but does not deploy HSTS. To our surprise, we found that
www.baidu.com (PC site) took different strategies according to different IPs.
When we sent HTTP request to www.baidu.com from the US, we received the
response without HTTPS deployment, while the response came with HSTS
deployment in China.

Incorrect Setting Method. RFC6797 [8] defines that HSTS can not be set
via HTTP, thus we counted the invalid settings in Table 5.

Table 5. Invalid HSTS setting via HTTP

Request type PC-HTTP PC-HTTPS Mobile-HTTP Mobile-HTTPS

Sites of invalid
HSTS setting

4,299 533 4,211 566

In order to understand the situation of invalid settings better, we have
checked the details of settings. 525 PC sites sent HSTS header for both HTTP
requests and HTTPS requests via HTTP, which means they only provided HTTP
service but deployed HSTS. Particularly, 8 PC sites sent HTTP pages without
HSTS for HTTP requests, and redirected HTTPS requests to HTTP requests of



HSTS Measurement and Stripping Attack 497

another domain, and that domain would send an HTTP page with HSTS header.
For example, for www.andreicismaru.ro, we would get normal HTTP page with-
out HSTS header for HTTP request, but also HTTP page with HSTS header
from http://cetin.ro/ after we sent HTTPS request to www.andreicismaru.ro.
However, if they only provided HTTP service, HSTS policy would be invalid.
These sites’ owners may have a misconception of the HSTS policy. Namely, HSTS
policy does not provide confidentiality of traffic, it just ensures the correct imple-
mentation of the HTTPS.

Errors of HSTS Field Settings. In these detected HSTS headers, we found
various errors that were contrary to the standard protocol. The protocol points
out that max-age is a required field but the results showed that both mobile
sites and PC sites have several max-age setting errors. We took PC websites as
an example to avoid duplication.

First, we found errors in headers which were not properly including max-
age=5. For instance, www.lovdata.no set the field to maxage=31,536,000, which
missed the symbol -. www.mijn-econnect.nl, www.xn—-7sbnackuskv0m.xn–p1ai
and www.bottomline.com all missed the symbol =.

And www.chrcitadelle.be set the field to a single number, like 86,400 .
Then, we checked the headers with max-age=. Unfortunately, many formal

errors exist and we show them in Table 6. Following this, we found a lot of max-
age values were not reasonable. If the value is extremely small, HSTS policy will
soon expire. To our surprise, 1,484 sites deploy HSTS with max-age=0, which
means the HSTS policy is invalid. But the big value is not reasonable as well,
owing to the fact that sites need to update HSTS policy timely if HTTPS service
changes. However, www.cloudup.com set the filed tomax-age=100,000,000,000,
and www.aptopnews.com set the field to max-age=9,223,372,036,854,775,807.
Both of them are more than 1,000 years.

Redirection Problems. Usually, lots of redirections exist during our visit to
many sites. If HSTS deployment in redirections is incorrect, the final HSTS is
equally invalid. We counted the redirection times of the sites where HSTS was
deployed in Table 7.

Here we counted every client request until the final visit succeeded. It can
be seen from Table 7, most sites who deployed HSTS did not have redirections
for HTTPS requests. However, one or more redirections occurred when han-
dling HTTP requests. If the redirections between HTTP and HTTPS did not
deal with HSTS deployments well, the attack will be equally easy despite the
existence of HSTS. We found that 929 PC sites did not fully deploy HSTS
during redirection from HTTP to HTTPS, and the number for mobile sites
is 1106. In order to understand the distinction better, we analyzed the detail
of redirections. A fact we can not overlook is that many sites provided differ-
ent domains for mobile requests and PC requests, like https://m.example and

5 max-age= is the standard format which is defined by RFC document.



498 X. Li et al.

Table 6. Examples of max-age= errors

max-age=expireTime
%E2%80%9Cmax-age=31536000%E2%80%B3
xa8xb9max-age=31536000xa8xb9xb3xacN

max-age=31536000%E2%80%9D
max-age=“157680000”
max-age=“10368000”
max-age=<31536000>
max-age=31536eee
max-age=31556926?

xa8xb9max-age=31536000?
x81gmax-age=31536000x81

max-age=
max-age=0.000001

Table 7. Redirection times of sites with HSTS header

Request type Redirection times

0 1 2 ≥3

PC-HTTP 7.9% 60.7% 27.0% 4.4%

PC-HTTPS 57.8% 34.6% 6.0 % 1.6%

Mobile-HTTP 7.5% 58.3% 28.7% 5.5%

Mobile-HTTPS 55.6% 35.6% 6.8% 2%

https://www.example. However, many mobile servers just deployed HSTS in the
response of https://m.example but not https://www.example. In the end, if we
still send HTTP requests of www.example, HSTS policy would not work. We
show this process in Fig. 2. Besides, the same situation occurred when the www
subdomain did not exist.

Specifically, 12 mobile sites did not deploy HSTS in the first response to
https://m.example. Moreover, 110 sites first gave a response of http://m.example,
and then redirected to https://m.example with HSTS headers. But it was not
enough, for the attacker can hijack the request of HTTP. It needs to be empha-
sized that sites should deploy HSTS in the first response after requesting domain
A, if they want to provide a redirection from domain A to domain B.

4.3 Two Ubiquitous Overlooks

Bookmarks in Browsers. Although many sites have already known the sig-
nificance of HSTS policy, there are still serious problems as described above. In
this section, we investigate two kinds of phenomenas that were easily overlooked.
Bookmarks in browsers are often used to record a website that users would like
to visit later. Sometimes users add the current page being visited to bookmarks,
so the scheme attributes will be preserved. However, if users manually type in



HSTS Measurement and Stripping Attack 499

Fig. 2. Mobile sites redirection problem: server gives two redirections without HSTS
when handling HTTP request from mobile browser in step ❶∼❺, and only deploys
HSTS in the response of mobile domain in step ❻∼❼.

the URL, they may forget to enter the scheme part. The browsers will add the
URL with the HTTP prefix automatically, which means that the browser will
send an HTTP request first when the users click the bookmark. In addition, we
have learned that mobile devices’ bookmarks keep in sync with Safari browser for
iOS users. If there are too many redirections before the final visit to the HTTPS
site, there will be a threat. We have checked different browsers (Chrome, Fire-
fox, Safari) and found the same threat. Bookmarks did not have a mechanism
to check these URLs. Google showed the popular desktop browsers [15] and we
checked the bookmarks and navigation panels of these browsers. Opera, Chrome,
Edge, and Firefox all support adding URL manually and add the HTTP prefix
by default. However, users cannot insert URLs into IE11 and Safari manually.
The users can only add the sites which they are visiting in these two browsers.

Navigation Panels in Browsers. Almost all of the browsers’ home pages
include navigation panels, and websites offer navigation panels services as well.
Unfortunately, after our in-depth investigation, we have found that there is an
error in the built-in URL of the navigation site. Many sites which only support
HTTPS are inserted with HTTP in navigation pages. Users tend to trust the
address of navigation panels and click it instead of typing address in address bar.
Therefore, browsers will send HTTP requests for these sites even they support
HTTPS and it may contain a threat according to the risks mentioned above.
In the next section we will introduce an enhanced HTTPS attack based on the
risks in these findings.



500 X. Li et al.

5 An Enhanced HTTPS Stripping Attack

HSTS allows a web site to opt in to be HTTPS only. For a site with HSTS,
a browser will only send HTTPS requests, eliminating the window of insecu-
rity. Apart from this, HSTS maintains a preload list, which is hard coded into
browsers and is supported by Chrome and Firefox. However, very few websites
have joined the list, and many have chosen to implement dynamical HSTS. The
emergence of HSTS can avoid stripping attacks to a great extent, but we have
discovered the flaws in the HSTS deployment and browsers. Based on these
defects, HTTPS stripping attack can still work. In this section, we will analyze
the reason why original stripping attack tool sslstrip, which was developed by
Marlinspike [7], does not work in new environment. Then, we implement an
enhanced HTTPS stripping attack and verify it on famous sites. We only want
to prove that HTTPS can be downgraded easily based on the defects.

5.1 Original Sslstrip and Inspiration

Plenty of attacking tools have integrated sslstrip, such as bettercap [16], mitmf
[17]. However, through our tests of various websites, we have found that the
success rate of sslstrip was very low. To learn the reason in detail, we studied
the principles of sslstrip. After hijacking the traffic, sslstrip will search the https
strings, and replace all https with http in traffic. Then we analyzed the source
code of webpages and found the answer. Old webpages are usually constituted of
static text, and the replacement of https is simple. However, the web pages have
become more complicated over time, and new webpages contain a large number of
dynamic elements. Besides, many take new methods to detect stripping attack,
like the location in srcipts, but sslstrip does not have any solution to handle
these scripts. Moreover, the time consumption of replacement in sslstrip is very
large for the reason that sslstrip has to wait for all packets and search the target
strings. If too much time has been spent on replacement, the connection will fail.
After our tests, we found that the users can not visit the most webpages when
sslstrip works, indicating that the original sslstrip is not suitable for the current
web pages.

Researchers have pointed out that front-end hijacking is an effective method
in the blog [18]. So in this section, we will take a front-end approach to perform
stripping attacks according to the ideas mentioned in the blog. The main princi-
ple is derived from this blog, but we have improved the method. The differences
between our work and the blog are three-folds: First, we handle the location field,
which can detect the stripping attack. We modify the location field in the script
andmake it invalid. Second,we handle secure cookie. Secure cookiemust be deleted
from response headers so that we can get plenty of privacy information. Finally,
we do a number of tests to verify the effectiveness of the attack. The tests are done
on different browsers and famous websites. In our attack, XSS skill is used, but it
does not mean that the attacker can inject any content all the time. If we do not
downgrade the HTTPS scheme, the following traffic will be encrypted. Actually,



HSTS Measurement and Stripping Attack 501

we only want to show the possibility of HTTPS being downgraded based on the
defects we find. Designing a new attack tool is not our goal.

5.2 Principles of Enhanced Stripping Attack

Precondition of Attack. What needs to be emphasized is that our attack
will be invalid if the first request is an HTTPS request. Also, if the domain has
been added to the HSTS preload list, our attack will not work. However, based
on our previous sections, it is not difficult for us to get HTTP request first. We
summarize the reasons below:

– Firstly, the preload list is so short that it can not include all websites and
many browsers still did not support preload list.

– Secondly, many sites only support HTTPS service but not HSTS, so the
results will be HTTP requests first if the user type the domain name in
address bar without scheme.

– Thirdly, if the users have not visited the site, the first request is still the
HTTP request due to the fact that HSTS policy has not worked yet.

– Fourthly, many redirection problems occur during HSTS deployment accord-
ing to our study. Besides, a mix of HTTP and HTTPS connections exists in
plenty of websites. Both of them responded to the HTTP request.

– Finally, the records in bookmarks and navigations panels remembered the
HTTP request or old domain name.

Therefore, even the sites provided HTTPS service and deployed HSTS policy,
it was not very difficult for the attacker to get HTTP request first. Then the
attacker must act as a proxy in our attack. It was easy for the attacker to get
traffic data by using ARP spoofing or DNS spoofing tools in local area network
or WiFi and the attack is carried out in the process of counterfeiting proxy. What
should be noted is that our attack is not a perfect attack tool for all webpages.
Because our goal is to show the insecurity of incorrect deployment. Hence, our
attack mainly focuses on the common web structures.

Detailed Implementation. The whole idea of attack is ingenious to injecting
a JavaScript script at the beginning of the traffic. If users do not click the https
links, the links will not be effective. Therefore, the key is to replace the link at the
moment of the click. DOM-3-Event is an event capture mechanism, which can
be used to capture the global click event. If the clicks fall on the https hyperlink,
we intercept them and change https to http and the time cost is very small.

As for form submission, we can listen to the submit instead of click, and
change the href to action. For frame pages, this is a problem. We only downgrade
the main page into HTTP version, but the frame address is still the original,
which will cause a cross domain problem for the different protocols. We use
Content Security Policy to avoid the HTTPS framework page. In the response
from our proxy, we added the following HTTP header.



502 X. Li et al.

CSP policy

Content-Security-Policy: default-src *
data: ‘unsafe-inline’ ‘unsafe-eval’;
frame-src http://*

‘unsafe-inline’ allows the page to load inline resource, ‘unsafe-eval ’ allows
the page to load dynamic JS code, and frame-src specifies the frame’s load pol-
icy. However, after our test, we found that many websites use script, namely,
the location attribute of the browser [19], to detect whether the site provides
HTTPS protocol. Here we take mail.qq.com for example. The mail.qq.com loca-
tion program is showed below.

mail.qq.com location

<script>
(function()
{if(location.protocol=="http:"){
document.cookie = "edition=;expires=-1;
path=/;domain=.mail.qq.com";
location.href="https://mail.qq.com";
}
})();
</script>

If the protocol of the site has been changed to http, the cookie and scheme
will be changed back by location. Drawing on the idea of the original sslstrip
attack, we can replace the http with https in the script in the backend proxy. We
only search the http in scripts, thus the cost of replacement can be ignored. We
first search the location in script and then replace the http with https. Even the
protocol scheme is http, the jump will not occur. So the whole idea is consisted of
two parts. The first one is the XSS script of front end, which listens to events and
replaces https with http. The other is the proxy of back end, which can replace
the http in location field to prevent the script from jumping. To launch the
stripping attack successfully, we have to solve two problems, which we summarize
as follows:

(1) The problem is how to let the proxy know whether the request is sent by
HTTPS or HTTP. The proxy actually is a man in the middle. If it modifies
the HTTPS resource, it must restore the HTTPS request to the server,
otherwise the attack will be detected by the server.

(2) Many websites redirect HTTP requests to HTTPS websites through 302
redirection and have deployed HSTS. We need to forward the redirection,
inject the script and delete the HSTS header.

For the first problem, we use the mark method to distinguish whether the
link is replaced. When we replace the HTTPS with HTTP, we can add a mark
in the modified URL at the same time. In order to hide the mark, we can choose
fraudulent marks, like utf-8, ?zh cn, ?ssl. Therefore, when the proxy handles the



HSTS Measurement and Stripping Attack 503

Fig. 3. Proxy mark process: first the XSS script will add a symbol into HTTPS request
and HTTPS will be downgraded to HTTP. Then the proxy will change the HTTP
request to HTTPS request according to the symbol and forward it to remote server.
The HTTP request will be forwarded to the server directly.

URL, it will know how to take measures to forward the requests according to
the mark. The proxy also need to record the https requests and symbols. The
whole processes are described in Fig. 3. For the second problem, we must add
a module in proxy to handle it. In that module, we intercept this redirection,
obtain the content of redirection with HTTPS request, and finally reply the user
with HTTP scheme. The response to the user will include the script and CSP
policy we designed. Besides, if we find HSTS header or secure cookie field in
responses from server, we delete them in proxy quickly. The redirection problem
is handled in Fig. 4.

Fig. 4. Handling redirection: the proxy will forward the http request to remote server
in step ❶∼❷, and then establish a secure connection with the server in step ❸∼❺.
Next, the proxy will modify the location and inject the XSS script in the response
packet. Finally, the proxy will return an HTTP page with script to the user in step ❻.

5.3 Experiment Results

In this section we demonstrate our attack against several popular websites to
verify the defects we found. These websites are shown in Table 8.

Here mail.qq.com represents the qq.com due to the fact that www.qq.com
provides HTTP service6. And m.kaskus.co.id represents mobile sites which did
6 mail.qq.com is one of the most popular Chinese e-mail services and provides HTTPS

services. Although mail.qq.com did not deploy HSTS, it used location to detect
whether the current protocol is downgraded.



504 X. Li et al.

Table 8. Sites to test and relevant security measures

Alexa ranking Domain HTTPS Dynamic HSTS Preload list

4 www.baidu.com Y Y N

6 www.amazon.com Y Y Y

8 mail.qq.com Y N N

12 www.taobao.com Y Y N

335 m.kaskus.co.id Y Y N

not deploy HSTS in the first response to https://m.example. We launched our
attack on different scenarios and different browsers7.

The results of attack are showed in Table 9. Bookmarks and navigation
imply default HTTP requests in these mechanisms. Automatic domain means
that users typed domain manually and the browser complemented a domain
name automatically. These three tests were conducted on Firefox browser,
which supports preload list. We show the examples of www.taobao.com and
www.amazon.com in Figs. 5 and 6, which show the hijacked URLs in address
bars.

Table 9. The results of new stripping attack

Domain Scenarios

Bookmarks Navigation Automatic
domain

Other
browsers

www.baidu.com Y Y Y Y

www.amazon.com N N N Y

mail.qq.com Y Y Y Y

www.taobao.com Y Y Y Y

m.kaskus.co.id Y Y Y Y

According to the results, even the site has deployed HSTS, there is a possi-
bility of being hijacked. As for the websites only provide HTTPS and did not
deploy HSTS, the attack will succeed every time when users visit it with HTTP
request. These websites which have deployed HSTS but were not in the preload
list or did not fully deploy HSTS during the redirection process, will be in danger
as well. And the websites in the preload list would be hijacked in the browser
that did not support preload list.

7 In this test, other browsers means those which did not support preload list, like UC
browser, Sogou browser.

https://www.baidu.com/
https://www.amazon.com/
https://mail.qq.com/
https://www.taobao.com/
https://m.kaskus.co.id/
https://www.baidu.com/
https://www.amazon.com/
https://mail.qq.com/
https://www.taobao.com/
https://m.kaskus.co.id/


HSTS Measurement and Stripping Attack 505

Fig. 5. taobao.com Fig. 6. amazon.com

6 Discussion

To deploy HTTPS and HSTS in a more secure way, we must take measures from
both ends.

6.1 Browser/User

Browsers should provide a mechanism which can check the scheme of domain.
If the response of the real site is contrary to the check, the browser should
give a strict warning and it can prompt the user to manually enter the URL
with scheme so as to avoid be hijacked. A preload list is not enough and it
is so strict that many websites did not meet the requirements. Many serious
problems occur in preload list, so the browsers vendors have to adapt the list to
cope with the dynamic change. The list should be accepted by more browsers.
Apart from these, active defense should be considered by browsers. Browsers
should actively establish a secure bookmark and navigation mechanism. They
can not allow users to modify the bookmarks casually, which has security risks.
The browsers should check whether the scheme in the bookmark has changed
and the navigation in browsers should be updated in time to avoid outdated
URL.

As for users, we strongly recommend that users observe the scheme carefully
when adding a bookmark. Most of times users should not tend to click the
navigation links on unfamous sites, owing to the deceptive attack, particularly
financial and other sensitive sites, like online banking, electronic commerce. Users
should go to the HTTPS version of the site from users’ machine while using a
secure network, and then bookmark that page. Besides, always open the site by
accessing the bookmark whenever users want to visit that page. At the same
time, users should pay attention to the jumps from HTTPS to HTTP or vice
versa. It will do great help for users to install the software plugins, like HTTPS
Everywhere or ForceTLS, which may reduce the occurrence of stripping attack.

6.2 Server/Website

As for sites owners, first, they should enable SSL site wide and use HTTPS as
much as possible. Then the sites should enable HSTS policy and Cert Pinning,
but also be careful when dealing with each step of process, i.e., sites should
better deploy HSTS in every packet of HTTPS response. In order to let HTTPS
and HSTS work better, the sites should enable secure cookies and use mixed
content in HTTPS pages as less as possible. Ensure that all cookies are served
with the secure attribute, so that user’s browsers will only send those cookies



506 X. Li et al.

back over SSL-protected connections and never disclose them over any non-SSL
links. Finally, the sites should use HTTPS everywhere and join the preload list
as soon as possible.

7 Related Work

7.1 HTTPS Security

Many researchers studied about HTTPS security in recent years and most
focused on TLS/SSL security. Client-end TLS software and non-browser soft-
ware have defects on implementation and the root causes of these vulnerabilities
are badly designed APIs of SSL implementations or negligence [20,21]. Great
security threats are present in SSL proxys as well [10,20,22], where proxy can
break the end to end security. Another thing that affects SSL security is the
certificate. Many studies were dedicated to solve the problems of certificate man-
agement, the private key management and certificate validity [23,24]. There are
several evaluations of large-scale SSL deployments problems [25,26]. Warnings
from browsers are pivotal for users to avoid attacks, so several researchers have
investigated the effectiveness of warnings [27,28]. This paper is different from
them and we mainly focus on the threat of HTTPS stripping attack.

7.2 HSTS Security

HSTS was born to ensure that HTTPS performs better. However, many flaws
exist in deployment of HSTS as well. Researchers have found that even though
these protocols are implemented, bad practices prevent them from actually pro-
viding the additional security they are expected to provide [29]. They studied the
implementations of HSTS in Firefox, Chrome and IE, and found several poten-
tial attack scenarios. Kranch and Bonneau [12] have done a measurement about
HSTS and HPKP policy. They mainly found errors for sites with HSTS headers
and analyzed the security of cookies. Our work is largely distinct from them. We
focused on redirection problems and carried on the detailed classification to the
setting errors. Besides, we have done the experiments on mobile platforms and
have found defects in bookmarks and navigations panels.

7.3 Stripping Attack Studies

Since Marlinspike et al. [7] published the sslsttrip attack, researchers have been
working on it for years. To overcome sslstrip attacks, many schemes have been
proposed. ForceHTTPS [30] is a simple browser security mechanism that web
sites or users can use to opt in to stricter error processing, but it needs users to
install extra plugins. Zhao et al. [31] presented a new defense scheme according to
secure cookie as well. However, these defense schemes can only succeed under the
specific environment, which can not defend against the attack we implemented
perfectly. In our paper, we have strengthened the previous sslstrip attack and
successfully launched the enhanced stripping attack to various websites in sim-
ulated scenarios.



HSTS Measurement and Stripping Attack 507

8 Conclusion

In this paper, we have found many sites owner or developers did not understand
the HSTS policy well. We have exposed that a lot of top-ranking sites had
incorrect deployment and redirection problems. Many websites did deploy HSTS
policy, but several redirections occurred when we visited them. Unfortunately,
the HSTS is not fully deployed during the redirections, still left the possibility of
being attacked. In addition, lots of instructions field setting errors were found by
us. Moreover, schemes in bookmarks and navigation are forgotten by users easily.
After our investigation, we found that the default HTTP supplementation mode
of bookmarks has a security problem and the default address in the navigation is
at risk of being downgraded as well. To test the risk of these defects, we designed
an enhanced HTTPS stripping attack, which strengthened the previous sslstrip
attack. The success rate is high based on the pitfalls we found.

In summation, our paper can give some guidance to the sites who want
to deploy HSTS correctly. Besides, due to the fact that the defects we found
contribute to the stripping attack, our work is able to help users to reduce
the risks of being attacked. We hope our research enables HTTPS and HSTS
protocol to provide more efficient service and make users’ information more safe
compared with now.

Acknowledgements. This work was partly supported by the National Key
Research and Development Program of China under No. 2016YFB0800102 and
2016YFB0800201, the National High Technology Research and Development Program
of China under No. 2015AA015602 and 2015AA016103, the Key Research and Develop-
ment Program of Zhejiang Province under No. 2017C01064 and 2017C01055, the Fun-
damental Research Funds for the Central Universities, the NSFC under No. 61772466,
the Alibaba-Zhejiang University Joint Research Institute for Frontier Technologies
(A.Z.F.T.) under Program No. XT622017000118, and the CCF-Tencent Open Research
Fund under No. AGR20160109.

References

1. Rescorla, E.: HTTP over TLS (2000)
2. Berners-Lee, T., Fielding, R., Frystyk, H.: “RFC 1945: hypertext transfer protocol?

HTTP/1.0, May 1996.” Status: INFORMATIONAL 61 (2005)
3. Freier, A., Karlton, P., Kocher, P.: The secure sockets layer (SSL) protocol version

3.0 (2011)
4. Dierks, T., Rescorla, E.: “RFC 5246: the transport layer security (TLS) protocol.”

The Internet Engineering Task Force (2008)
5. Google Transparency Report. https://www.google.com/transparencyreport/

https/?hl=zh-CN
6. Let’s Encrypt. https://letsencrypt.org
7. Moixe, M.: New tricks for defeating SSL in practice. Technical report, BlackHat

Conference, USA (2009)

https://www.google.com/transparencyreport/https/?hl=zh-CN
https://www.google.com/transparencyreport/https/?hl=zh-CN
https://letsencrypt.org


508 X. Li et al.

8. Hodges, J., Jackson, C., Barth, A.: “RFC 6797: HTTP strict transport security
(HSTS)”. IETF (2010). https://tools.ietf.org/html/rfc6797

9. Sivakorn, S., Polakis, I., Keromytis, A.D.: The cracked cookie jar: HTTP cookie
hijacking and the exposure of private information. In: 2016 IEEE Symposium on
Security and Privacy (SP), pp. 724–742. IEEE Press (2016)

10. Chen, S., et al.: Pretty-bad-proxy: an overlooked adversary in browsers’ HTTPS
deployments. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 347–
359. IEEE Press (2009)

11. Extract DNSSEC support statistics for the top 1 million hosts of the Alexa
database. https://github.com/jefmathiot/dnssec-stats

12. Kranch, M., Bonneau, J.: Upgrading HTTPS in mid-air: an empirical study of
strict transport security and key pinning. In: NDSS (2015)

13. HSTS Preload List Submission. https://hstspreload.appspot.com
14. Run a daily status scan of the official preload list. http://github.com/chromium/

hstspreload.org/issues/35
15. Desktop Browser Market Share. https://www.netmarketshare.com/browser-

market-share.aspx?qprid=0qpcustomd=0
16. Bettercap. https://www.bettercap.org
17. Framework for Man-In-The-Middle attacks. https://github.com/byt3bl33d3r/

MITMf
18. SSL Frontend hijack. https://www.cnblogs.com/index-html/p/ssl-frontend-hijack.

html
19. HTML5. https://www.w3.org/TR/2014/REC-html5-20141028/browsers.html#

window
20. de Carnavalet, X.C., Mannan, M.: Killed by proxy: analyzing client-end TLS inter-

ception software. In: Network and Distributed System Security Symposium (NDSS
2016), San Diego, CA, USA (2016)

21. Georgiev, M., et al.: The most dangerous code in the world: validating SSL cer-
tificates in non-browser software. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 38–49. ACM (2012)

22. Soghoian, C., Stamm, S.: Certified lies: detecting and defeating government inter-
ception attacks against SSL (short paper). In: Danezis, G. (ed.) FC 2011. LNCS,
vol. 7035, pp. 250–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-27576-0 20

23. Szalachowski, P., Matsumoto, S., Perrig, A.: PoliCert: secure and flexible TLS
certificate management. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 406–417. ACM (2014)

24. Cangialosi, F., et al.: Measurement and analysis of private key sharing in the https
ecosystem. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 628–640. ACM (2016)

25. Bates, A., et al.: Forced perspectives: evaluating an SSL trust enhancement at scale.
In: Proceedings of the 2014 Conference on Internet Measurement Conference, pp.
503–510. ACM (2014)

26. Holz, R., et al.: The SSL landscape: a thorough analysis of the x. 509 PKI using
active and passive measurements. In: Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, pp. 427–444. ACM (2011)

27. Sunshine, J., et al.: Crying wolf: an empirical study of SSL warning effectiveness.
In: USENIX Security Symposium, pp. 399–416 (2009)

28. Akhawe, D., Felt, A.P.: Alice in Warningland: a large-scale field study of browser
security warning effectiveness. In: Usenix Security, pp. 257–272 (2013)

https://tools.ietf.org/html/rfc6797
https://github.com/jefmathiot/dnssec-stats
https://hstspreload.appspot.com
http://github.com/chromium/hstspreload.org/issues/35
http://github.com/chromium/hstspreload.org/issues/35
https://www.netmarketshare.com/browser-market-share.aspx?qprid=0qpcustomd=0
https://www.netmarketshare.com/browser-market-share.aspx?qprid=0qpcustomd=0
https://www.bettercap.org
https://github.com/byt3bl33d3r/MITMf
https://github.com/byt3bl33d3r/MITMf
https://www.cnblogs.com/index-html/p/ssl-frontend-hijack.html
https://www.cnblogs.com/index-html/p/ssl-frontend-hijack.html
https://www.w3.org/TR/2014/REC-html5-20141028/browsers.html#window
https://www.w3.org/TR/2014/REC-html5-20141028/browsers.html#window
https://doi.org/10.1007/978-3-642-27576-0_20
https://doi.org/10.1007/978-3-642-27576-0_20


HSTS Measurement and Stripping Attack 509

29. de los Santos, S., Torrano, C., Rubio, Y., Brezo, F.: Implementation state of HSTS
and HPKP in both browsers and servers. In: Foresti, S., Persiano, G. (eds.) CANS
2016. LNCS, vol. 10052, pp. 192–207. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48965-0 12

30. Jackson, F., Barth, A.: Protecting high-security web sites from network attacks.
In: Proceedings of the 17th International World Wide Web Conference (WWW
2008) (2008)

31. Zhao, S., Yang, W., Wang, D., Qiu, W.: A new scheme with secure cookie against
SSLstrip attack. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds.) WISM 2012.
LNCS, vol. 7529, pp. 214–221. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33469-6 30

https://doi.org/10.1007/978-3-319-48965-0_12
https://doi.org/10.1007/978-3-319-48965-0_12
https://doi.org/10.1007/978-3-642-33469-6_30
https://doi.org/10.1007/978-3-642-33469-6_30

	HSTS Measurement and an Enhanced Stripping Attack Against HTTPS
	1 Introduction
	2 Overview of Web Security
	2.1 HTTPS and Stripping Attack
	2.2 HSTS Protocol
	2.3 HSTS Security Consideration

	3 Data Collection
	4 Current Deployment Measurement
	4.1 Preloaded HSTS
	4.2 Alexa Top Million Websites with Dynamic HSTS
	4.3 Two Ubiquitous Overlooks

	5 An Enhanced HTTPS Stripping Attack
	5.1 Original Sslstrip and Inspiration
	5.2 Principles of Enhanced Stripping Attack
	5.3 Experiment Results

	6 Discussion
	6.1 Browser/User
	6.2 Server/Website

	7 Related Work
	7.1 HTTPS Security
	7.2 HSTS Security
	7.3 Stripping Attack Studies

	8 Conclusion
	References




